GCT634/AI613: Musical Applications of Machine Learning

Automatic Music Transcription: Monophonic

Juhan Nam

Overview of Automatic Music Transcription (AMT)

- Predict score information from acoustic music signals
 - Pitch contour: frame-level continuous pitch curves
 - MIDI: note-level events or piano rolls
 - Sheet music: symbolic music notation

AMT Tasks

- Pitch estimation (frame-level)
 - Monophonic pitch estimation from a single sound source
 - Polyphonic pitch estimation from multiple sound sources
 - Polyphonic single instrument: piano, guitar
 - Polyphonic multiple instrument: violin + cello + piano (stream-level)
 - Melody estimation: single melodic pitch estimation from multiple sound sources

Polyphonic + instrument

AMT Tasks

- Note Transcription (note-level)
 - Based on the frame-level pitch estimation
 - □ Identify a note by detecting the onset and offset → MIDI note on/off events
 - The task is challenging when the pitch is expressive (e.g. singing, violin)

MIDI Messages

"Note on: note=61, vel=80"
"Note off: note=61, vel=80"

Polyphonic piano transcription

https://piano-scribe.glitch.me/

Singing Note Transcription (Tony)

https://www.sonicvisualiser.org/tony/

AMT Tasks

- The sheet music needs a lot more information (complete AMT)
 - Based on the note transcription
 - Metric analysis: tempo estimation, beat/downbeat detection
 - → quantize onset and offsets to beat-based time units
 - Key detection: 12 pitch classes and major/minor (e.g. C major)
 - Notes: clef, stem, beam
 - Expressions: dynamics (e.g. piano/forte), articulation (e.g. staccato),

Monophonic Pitch Estimation

- When a tone is generated with a pitch, the waveform is periodic (or nearly periodic) and the spectrum is harmonic (or nearly harmonic)
- Pitch is often called fundamental frequency or "F0" (F0 =1/period)
- Traditional approaches (digital signal processing)
 - Time-domain approach: estimate the period of the waveform
 - Frequency-domain approach: exploit the harmonic pattern

Waveforms of Flute A4 note

Spectrum of Flute A4 note

Time-Domain Approach

- Measure the period: x(t) = x(t+T)
- Calculate the distance between a segment in a fixed window and another segment in a sliding window
 - Auto-correlation function (ACF): distance by the inner product
 - Average magnitude difference function (AMDF): Euclidean distance
 - AMDF is more robust to the amplitude changes compared to ACF
- Find the time difference (lag) that makes the best match

Time-Domain Approach: YIN

- Based on the normalized AMDF
 - Choose the minimum notch below a threshold

$$\hat{d}(l) = \begin{cases} d(l)/[\frac{1}{l}\sum_{u=1}^{l}d(u)] & \text{otherwise} \\ 1 & l = 0 \end{cases}$$
 $d(l)$: AMDF

Frequency-domain Approach

- Pattern matching: cross-correlation between log-frequency spectrum with a pre-defined harmonic template
 - SWIPE: use the spectrum of sawtooth waveform
- Harmonic product sum (HPS): successive product with harmonically down-sampled spectra
 - Use as a pitch salience function

Cepstrum

- Decompose spectrum into harmonic partials (periodic) and frequency envelope (slowly-varying)
 - Real Cepstrum: $c_x(l) = \text{real}\{\text{FFT}^{-1}(\log|FFT(x)|)\}$
 - "Liftering" to remove the frequency envelope

Cepstrum Pitch Determination, A. Michael Noll, JASA, 1967.

Post processing: Smoothing

- Median filtering
 - Handy and useful to remove outliers (e.g. octave jump)
- Viterbi decoding (based on hidden Markov model)
 - Find the best path with the maximum likelihood considering pitch transition
 - PYIN: use a probabilistic threshold and find the best sequence (Tony)

CREPE: Monophonic Pitch Estimation Using Supervised CNN

- Classification-based approach using CNN
 - Input: a single frame of waveforms (1024 samples, resampled to 16kHz)
 - Output: quantized pitch with a resolution of 20 cents --> 360 classes
 - The output labels are smoothed using a Gaussian function: softening the penalty for near-correct predictions

CREPE: Monophonic Pitch Estimation Using Supervised CNN

- Higher performance than traditional DSP methods
 - Higher raw pitch accuracy (RPA) and raw chroma accuracy (RCA)
 - Robust when a certain noise is added
 - But, low accuracy when the training set does not cover a wider pitch range or the pitch annotation is not consistent

Dataset	Metric	CREPE	pYIN	SWIPE
RWC-	RPA	0.999±0.002	0.990±0.006	0.963 ± 0.023
synth	RCA	0.999±0.002	0.990±0.006	$0.966 {\pm} 0.020$
MDB-	RPA	0.967±0.091	0.919±0.129	0.925±0.116
stem- synth	RCA	0.970±0.084	0.936±0.092	0.936±0.100

CREPE: Monophonic Pitch Estimation Using Supervised CNN

- Dataset issue in the supervised-learning approach
 - It is very tedious to annotate frame-level pitch labels on audio files. How can we obtain large-scale pitch annotations?
- Solution: Analysis-Resynthesis approach
 - Use a monophonic pitch estimator and obtain pseudo pitch labels (F0)
 - Re-synthesize the input source using the F0 values
 - Originally used for melody extraction in mixed audio

SPICE: Monophonic Pitch Estimation Using SSL

- Train a pitch estimation network without pitch labels
 - Siamese network to estimate a pitch difference when a pair of constant-Q transform has the same relative pitch difference

Relative pitch difference estimation error

$$\begin{aligned} 0 &\leq y_t \leq 1 & e_t = |(y_{t,1} - y_{t,2}) - \sigma(k_{t,1} - k_{t,2})| \\ \mathcal{L}_{\text{pitch}} &= \frac{1}{T} \sum_t h(e_t) & h(x) = \begin{cases} \frac{\mathbf{x}^2}{2}, & |x| \leq \tau \\ \frac{\tau^2}{2} + \tau(|x| - \tau), \\ \text{Huber norm} \end{cases} \end{aligned}$$

Reconstruction error

$$\mathcal{L}_{ ext{recon}} = rac{1}{T} \sum_{t} \|\mathbf{x}_{t,1} - \hat{\mathbf{x}}_{t,1}\|_2^2 + \|\mathbf{x}_{t,2} - \hat{\mathbf{x}}_{t,2}\|_2^2,$$

Confidence level estimation

$$\mathcal{L}_{ ext{conf}} = rac{1}{T} \sum_{t} |(1-c_{t,1}) - e_t/\sigma|^2 + |(1-c_{t,2}) - e_t/\sigma|^2$$

<u>Final pitch estimation</u>: the scale and offset are learned using a small labeled dataset

$$\hat{p}_{0,t} = b + s \cdot y_t = b + s \cdot Enc(\mathbf{x}_t)$$

PESTO: Monophonic Pitch Estimation Using Equivariant SSL

- Minimize the equivariance and invariance
 - \circ The output of the network y is a multinomial distribution (pitch classification)
 - Equivariance: shifting + cross-entropy for *k* transposition

o Invariance: add pitch-invariant transform (e.g. add noise) and cross-entropy

PESTO: Pitch Estimation with Self-supervised Transposition-equivariant Objective, Alain Riou, Stefan Lattner, Gaëtan Hadjeres, Geoffroy Peeters, ISMIR, 2023

PESTO: Monophonic Pitch Estimation Using Equivariant SSL

- Transpostion-preserving architecture
 - 1D-Conv: the frequency resolution remains unchanged
 - A softmax layer for the output
 - O Toeplitz fully-connected layer: preserve the transposition (m + n 1) elements instead of mn): equivalent to convolution

Figure 3. Architecture of our network f_{θ} . The number of channels varies between the intermediate layers, however the frequency resolution remains unchanged until the final Toeplitz fully-connected layer.

$$A = \begin{pmatrix} a_0 & a_{-1} & a_{-2} & \cdots & a_{-n+2} & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \ddots & \ddots & a_{-n+2} \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{m-1} & \cdots & \cdots & \cdots & \cdots & a_{m-n} \end{pmatrix}$$

Toeplitz Matrix

PESTO: Monophonic Pitch Estimation Using Equivariant SSL

A lightweight model

			Raw Pitch Accuracy	
Model	# params	Trained on	MIR-1K	MDB-stem-synth
SPICE [19]	2.38M	private data	90.6%	89.1%
DDSP-inv [45]	-	MIR-1K / MDB-stem-synth	91.8%	88.5%
PESTO (ours)	28.9k	MIR-1K	96.1%	94.6%
PESTO (ours)	28.9k	MDB-stem-synth	93.5%	95.5%
CREPE [16]	22.2M	many (supervised)	97.8%	96.7%

Robustness test

	Raw Pitch Accuracy (MIR-1K)			
Model	clean	20 dB	10 dB	0 dB
SPICE [19]	91.4%	91.2%	90.0%	81.6%
PESTO				
$\beta = 0$	94.8%	90.7%	79.2%	50.0%
$\beta = 1$	94.5%	94.2%	92.9%	83.1%
$\beta \sim \mathcal{U}(0,1)$	94.7%	94.4%	92.9%	81.7%
$\beta \sim \mathcal{N}(0,1)$	94.8%	94.5%	93.0%	82.6%
$\beta \sim \mathcal{N}(0, \frac{1}{2})$	94.8%	94.5%	92.9%	81.0%
CREPE [16]	97.8%	97.3%	95.3%	84.8%

Table 2. Robustness of PESTO and other baselines to background music with various Signal-to-Noise ratios. Adding background music to training samples significantly improves the robustness of PESTO (see section 4.4.2).

Ablation Study

	MIR-1K		MDB		
	RPA	RCA	RPA	RCA	
PESTO baseline	96.1%	96.4%	94.6%	95.0%	
Loss ablations	Loss ablations				
w/o $\mathcal{L}_{ ext{equiv}}$	5.8%	8.6%	1.3%	6.1%	
w/o $\mathcal{L}_{\mathrm{inv}}$	96.1%	96.4%	92.5%	94.5%	
w/o $\mathcal{L}_{ ext{SCE}}$	96.1%	96.5%	86.9%	93.8%	
Miscellaneous					
no augmentations	94.8%	95.4%	94.8%	95.2%	
non-Toeplitz fc	5.7%	8.7%	1.2%	6.1%	

Table 3. Respective contribution of various design choices of PESTO for a model trained on *MIR-1K*.

Source Code / Inference Models

- PYIN: https://librosa.org/doc/main/generated/librosa.pyin.html
- CREPE: https://github.com/marl/crepe
- SPICE: https://www.tensorflow.org/hub/tutorials/spice
- PESTO: https://github.com/SonyCSLParis/pesto

The neural pitch estimators use food names...

Melody Extraction

- Extract melodic pitch contours from polyphonic music
 - Pre-dominant pitch estimation in the presence of multiple sound sources

Methods

- Salience-based approach: use a saliency function (e.g. HPS)
- Source separation approach: separate the melodic source and use the monophonic pitch estimation
- Classification-based approach: use CNN or CRNN

Singing Melody Extraction

- Joint learning of singing voice detection and vocal pitch estimation
 - Combining the loss functions from the two tasks
 - Vocal pitch classification (CRNN)
 - ResNet stacks: "no pooling over time"
 - Bi-directional LSTM-RNN to learn temporal dependency
 - Use the Gaussian blurring in the output layer
 - Singing voice detector (CRNN)
 - Use the shared features from the three layers of the pitch classifier: "hierarchical" audio features (e.g., vocal formant, vibrato, portamento)
 - Bi-directional LSTM-RNN
 - https://github.com/keums/melodyExtraction_JDC

	Components		Output Size		
	Main	Main + AUX	Main	Main + AUX	
Input	-		31 × 513		
Conv block	[3:	$\times 3,64] \times 2$	31	× 513, 64	
ResNet Block 1	[3 ×	$(3, 128] \times 2$	31	× 128, 128	
ResNet Block 2	[3 ×	(3, 192] × 2	31	× 32, 192	
ResNet Block 3	[3 ×	$(3, 256] \times 2$	31	× 8, 256	
Pool block		-	31	× 2, 256	
Bi-LSTM	256	256 + 32	31×512	$31 \times (512 + 64)$	
FC	722	722 + 2	31×722	31 × (722 + 2)	

Singing Melody Extraction Using Teacher-Student Models

- Semi-supervised learning
 - Labeled data: used to train a teacher network
 - Unlabeled data: used to train a student network to predict the output of the teacher network

•	Dataset	Number of Tracks	Total Length
Training (Labeled)	RWC	100	6h 47m
	MedleyDB	61	2h 39m
	iKala	262	2h 6m
	In-house	535	6h 21m
Training	FMA_small	3,521 / 8,000	25h / 60h
(Unlabeled)	FMA_medium	10,639 / 25,000	89h / 208h
	FMA_large	40,505 / 106,574	337h / 888h
Test	ADC04	12	4m
	MIREX05	9	4m
	MedleyDB	12	43m
	AST218	218	14h 53m

Random data augmentation makes the student network perform betters

https://github.com/keums/melodyExtraction SSL